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CHEMICAL DESIGN OF ELASTOMERIC BEHAVIOR

STATEMENT OF PROBLEM

Although we have utilized elastomers and rubbers in engineering appli-
cations for over 140 years, the full potential of elastomeric behavior has
not been realized.' The problem has been that few relationships exist between
the structures of the crosslinks and the mechanical performance of the rubber.
The scarcity of knowledge stems not from a lack of study of the system--the
voluminous literature bears this out. The difficulties arise from the com-
plex nature of the reactions and the unyielding nature of the polymer with
respect to analysis. By definition, the networks are insoluble so traditional
chemical and speétroscopic techniques are limited. The number or density of
crosslinks is very small requiring sensitive techniques. Thus, the macro-
scopic behavior cannot be interpreted in chemical or structural terms. Until
structure preoperty relatidhships are established for crosslinked systems,
progress in elastomeric materials will be slow. With the knowledge of struc-
ture-property relationships fcr rubbers, special systems can be designed for

specific applications.

We proposed to utilize twe new instrumental techniques which are particu-
larly suited for studies of elastomeric systems to determine the structure
of crosslinks. We proposed using recently developed high resclution nuclear
magnetic resonance for the solid state on crosslinked compositions to deter-
mine the number and chemical structure of the crosslinks. In addition Fourier
transform infrared spectroscopy will be used to monitor and follow the kinetic
changes in the structures of the crosslinks. From a study of the chemical or
crosslinking reactions, the range of structural crosslinks can be established
and related to the physical and mechanical properties. In this manner, a
detailed knowledge of the number, kind, and structure of the crosslinks can

be obtained.

Coupling these experimental results with recent advances in our theoreti-

cal insights should allow the understanding and rational prediction of the

macroscopic behavior of networks. In this context, a structural theory should




be of value in designing elastomers and rubbers with special performance

attributes for military, aerospace and industrial applications.

SUMMARY REPORT

Using the combined methods of high-power preton decoupling and magic
angle sample spinning, it is possible to obtain solid state 13C spectra
which have a relatively narrow line width (~100Hz) and occurring at the
isotropic chemical shift positions observed for liquid-state 13C NMR
(1,2,3). Hence, using this combination of techniques, one can obtain
structural information concerning the nature of the carbons. For our
purpeses, we are interested in examining crosslinked polymer systems. Our
laboratory has a Nicolet ND-150 NMR spectrometer which has been designed
with a solid state probe allowing scme of the first measurements of solids
at high magnetic fields (4). Most of the previous work was carried out at
25 MEz rather than at 150 MHE: as with our instrument. However, no previous
work had been deone in this field with respect tc crosslinked rubbers so it
was necessary to develop the technique from the beginning. The method has
been developed and allows the detection ané structural assignment of the

different crosslinks and pendent groups as well as the isomerization of

the polymer chain which alsc occurs.

Our initial stucdies were directed at a model system (cis-pclybutadiene)
crosslinked with a chemical which would yield simple crosslinks (C-C) in
quantitative fashion. Dicumyl peroxide is such a system. The solid state
NMR of polybutadiene (uncrosslinked) is shown in Figure 1 while the spectra
of cis-polybutadiene crosslinked with 5 phr ROOR are shown with two differ-
ent pulse delay times in Figure 2. The twe different delay times serve to
indicate whether substantial differences in the relaxation times of the
carbons occur. In this case, no substantial differences are observed. It
is clear from the additional resonances near 50 ppm that we are observing
effects of the peroxide crosslinking. If one carries out a cross polariza-
tion experiment for this same sample, one observes the spectra shown in

Figure 3 (compared to the one pulse experiment). The cross peclarization

experiment is more sensitive to the more rigid portions of the sample
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(i.e. the crosslinks) as is obvious when the two spectra are compared.
Additional resonances are also observed on the aromatic carbon near 150 ppm
for the cross polarization experiment. We have carried out a number of
additional experiments two of which are shown in Figure 4. The highly
crosslinked polymer (30 phr ROOR) resin is examined and as expected the

new resonances are enhanced as the amount of crosslinking goes up. We

have also carried out a pulse sequence Which suppresses the resonances

of all non-quatenary carbons (i.e. carbons bonded to hydrogen) and a major
portion of the resonances arising from cro-slinking is suppressed. This
experiment is imperfect in that the resonances of the noncrosslinked perticrn
of the polymer cannot be suppressed at the same time as the crosslinked
portion due to the higher mobility of the uncrosslinkied butadicne resin.
However, near 50 pp~ we have clear evidence of quatenary carbon resonances
indicating the formation of these structures. Nc other analvtical method

existe for detecting these structures,
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Since these resonances arising from the crosslinking have not been
observed before, their assignment to the various structures needs to be
made. The structural assignment can be made using Grant-Paul additivity
relationships as shown in Figure 5. The procedure for carrying out the
calculation is also shown. We have made the calculations of the expected
resonances for a number of different crosslink structures. Figures 6 and
7 demonstrate the results (in stick spectral form) for two different pos-
sible crosslinked structures. The new resonances are clearly in the vicin-
ity observed experimentally and offer the possibility of assigning the

observed resonances to the structures in the crosslinked network. This

CALCULATION OF CARBON -13 CHEMICAL SHIFTS

OLEF IN CARBONS
CHs—CH=CH—CH;—CH,
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Figure 5.
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Project is continuing. We have found that swelling the crosslinked rubber
with benzene gives the network more mobility and sharper resonances are
observed. This result is shown in Figure 8 for peroxide crosslinking of

natural rubber. The improved resolution occurs with swelling of the rubber
with benzene,
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In addition to this project, we have also been studying sulfur vulcani-
zation of npatural rubber. In Figure 9, a diagram is given of the different
structural features expected in sulfur vulcanized rubbers. TFigure 10 gives

the NMR in the solid state of the cis and trans isomers of 1,4~polyisoprene.
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In Figure 1], we show twe spectra of natural rubber which have been curel
with 20 phr TMID/2PHR sulfur at 160°C for 30 cminutes anc a spectra cf naturel
rubber cured with only 10 phr of TMID at 160°C. The spectra are gquite
different and show that a very different netwerk structure has beer formel.

Some of the resonances have been assigned based on additivity calculaticrns

of the type previously mentioned. Observe particularly that we can for

the first time differentiate between the mono, di, and pelysulfidic lirnke.
Hence, we have an analytical method which can be used to follow the changes
in the network structure with the amount of sulfur and accelerator, anc

variations in time and temperature. Such measurements were nct possille

in the past.
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